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Abstract. The model of the multilayered media of the Kronig–Penney type with the applied
magnetic field oriented parallel to the layer surfaces is investigated. The operator of translation is
expressed in terms of the parabolic cylinder functions. The difference equations for the transfer
matrix and the electron wavefunction, as well as the rigorous equations on the electron energy
spectrum, are obtained. For the array of the flatδ-barriers all the limiting cases are analysed: weak
or strong magnetic field, weak or tight binding, multilayered film, infinite lattice. For the latter
it is shown that the destruction of the quasi-momentum space homogeneity at the magnetic field
switching on begins from the Brillouin zone edges and is quantitatively described by the cotangent
singularity.

1. Introduction

By now there exists a number of works devoted to the investigation of electron behaviour in the
periodic medium or quantum film with the applied homogeneous magnetic field. The physical
importance of diffraction processes is evident because they determine crossover from the Bloch
solution in lattice or from the standing waves in slab to the Landau solution [1] is obvious, but
the rigorous qualitative and quantitative quantum-mechanical description of the wavefunction
and the spectrum evolution is not trivial. The motion of the Bloch electron in the magnetic field
has been studied using different approaches and approximations which select one or another
important feature of the system (Peierls’s substitution [2], magnetic translation groups [3],
topological concepts [4], weak and tight binding [5,6], Pippard networks [7], effective mass [8],
semiclassical approximation [9], zone subdivision [10], Hofstadter’s butterfly [11] etc). Some
of the simplified models (such as Harper’s equation [6]) are of great interest and have been
developed in a wide variety of physical and mathematical contexts (incommensurate structures
and so forth) which have caused the corresponding flow of literature [12]. On the other hand,
in connection with the adjacent question about spectra in the magnetic field of the volume and
lateral superlattices it is interesting to observe the evolution of the skipping orbits [13,14] and
spectra of the magnetic surface levels in the films [15–17] when the multilayered structures
are formed.

In this paper a rather simple quasi-one-dimensional model of the multilayered media of
the Kronig–Penney type with the piecewise constant potential and with an applied magnetic
field oriented parallel to the surfaces of layers is studied. The one-dimensionality permits
us to find the explicit expression of the transfer matrix (the operator of translation) in terms
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Figure 1. The geometry of the problem.

of the parabolic cylinder functions. We obtain the universal rigorous difference equations
(a type of Harper equation, but with a different structure) for the transfer matrix and the
wavefunction, as well as the rigorous equation on the electron energy spectrum. Extensive
results are presented for the array of flatδ-barriers at different boundary conditions. All the
reasonable limiting cases are analysed: weak or strong magnetic field, weak or tight binding
(barrier transparence), multilayered film, infinite lattice. For the latter of special interest is
the quantitative description of the quasi-momentum space homogeneity destruction at the cost
of the breakdown of the translational invariance of the one-electron Hamiltonian at the weak
magnetic field. The destruction of homogeneity begins from the Brillouin zone edges and is
described by the cotangent singularity.

Our approach generalizes the rigorous one-dimensional solution of Floke–Liapunov [18]
which served earlier as the conceptual basis for the three-dimensional Fourier constructions of
Bloch and Brillouin [19]. Unfortunately, we cannot directly use this approach for the two- and
three-dimensional lattices, because it fails to separate variables, match explicitly the analytical
solutions in different cells and obtain the translation operator. To support the usefulness of
the detailed analysis of the ideal quasi-one-dimensional model for the diamagnetic lattice we
mention the analogy with the role and meaning of the one- and two-dimensional Ising model
in the theory of ferromagnetism and phase transitions because of its ‘solvability’ [20].

Apart from the formal interest our model has a practical value, because it is directly
applicable to the plane-parallel multilayered synthetic semiconductor or metal nanostructures
as well as to the lateral superlattices on the surfaces of the semiconductors or dielectrics, which
are now intensively investigated and widely used in microelectronics [21].

2. Description of the model and transfer matrix

Let us consider a multilayered system with plane-parallel boundaries and the magnetic field
H which is oriented parallel to the layers (figure 1).

We direct thez-axis along the magnetic fieldH, and thex-axis is transverse to the layers
so that the lattice potential is̃U = Ũ (X). We direct the vector potential along they-axis and
choose Landau gaugeA = (0, HX,0), so we will solve the steady-state Schrödinger equation
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in the standard form for this problem:[
p̂2
x

2m
+

1

2m

(
p̂y − eH

c
X

)2

+
p̂2
z

2m
+ Ũ (X)

]
9 = E9

9 = exp
i

h̄
(pyY + pzZ)ψ p̂xj = −ih̄

∂

∂Xj
(Xj = X, Y,Z).

(1)

If the film is bounded in theZ-direction, then theZ-projection of the momentum is elementary
quantizedpz = nzh̄/Lz whereLz is the size of film andnz is an integer number. It is not
simple to take the boundary conditions along they-axis into account analytically, so we will
assume the system to be unbounded along they-axis and the parameterpy to be continuous.

By making all parameters dimensionless, as usual, we arrive at the one-dimensional
differential equation

d2ψ

dx2
−
[
x2

4
+ ã (x)

]
ψ = 0. (2)

x is theX coordinate referenced from the ‘orbit centre’Xc and all of them are also expressed
in units of ‘magnetic length’l, that is

x = x − xc x = X

l
xc = Xc

l

l2 = ch̄

2|e|H =
h̄

2mω0
Xc = cpy

eH
= e

|e|
py

mω0
ω0 = |e|H

mc

(3)

whereω0 is the Larmor frequency, and̃a(x) is the dimensionless energetic parameter

ã(x) = −Et − Ũ (x)
h̄ω0

Et = E −
p2
z

2m
. (4)

In every layer, while the potential energy is constantŨ = const, the equation (2) is the
standard Weber equation [22], with the parameter

a ≡ −
(
ν +

1

2

)
= −Et − Ũ

h̄ω0
. (5)

Its solutions are the parabolic cylinder functions (the Weber functions)U(a, x) ≡ Dν(x)

andV (a, x) [23–25]. It is most convenient for us to useDν(x) andDν(−x) as the linear
independent solutions. Really, ifν 6= n, wheren is an integer, then their Wronskian is
different from zero and is equal to [23]

W {Dν(x),Dν(−x)} = det

(
Dν(x) Dν(−x)
D′ν(x) D′ν(−x)

)
=
√

2π

0(−ν) (6)

where a derivative with respect tox is denoted by a prime and0(−ν) is the Euler gamma
function.

At present the asymptotics of these functions are well investigated [22–26] (appendix A).
We note here that atx → ±∞, (|x| � |a|, out of parabolic well)Dν(x) decreases to the
right and increases to the left (qualitatively resembling e−x but considerably steeper), and
Dν(−x)—vice versa (like ex).

Inside the parabolic well atν ≈ −a � x2 both solutions oscillate. Atν → n degeneration
appears and both solutions are proportional to the Hermite polynomialHn(x/

√
2) of thenth

order and of definite parity

Dn(x) = 2−
n
2 e−

x2

4 Hn

(
x√
2

)
Dn(−x) = (−1)nDn(x).

(7)
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Figure 2. The effective one-dimensional magnetic ‘potential’ã(x) + x2/4 (heavy curve), the
layered potential̃a(x) (light curve) and the magnetic parabolic ‘potential’x2/4 (dashed curve).

Thus, in the layer on the interval of constancy of the parametera = −(ν + 1
2) and not

integerν, the general solution of the equation (2) has the form

ψ(x) = A+Dν(x) +A−Dν(−x). (8)

The matrix of transfer fromx1to x2 relates the columns of functionψ and its derivative
ψ ′ in these points [27](
ψ(x2)

ψ ′(x2)

)
= M(x2, x1)

(
ψ(x1)

ψ ′(x1)

)
M(x2, x1) =

(
M(x2, x1)11 M(x2, x1)12

M(x2, x1)21 M(x2, x1)22

)
. (9)

If the pointsx1andx2 belong to one layer, then with the help of (8) and (6) by the elimination
of the integration constantsA+ andA−we obtain for equation (2) the following form of the
transfer matrix:

M(ν)(x2, x1) = 0(−ν)√
2π

(
Dν(x2) Dν(−x2)

D′ν(x2) Dν(−x2)

)(
D′ν(−x1) −Dν(−x1)

−D′ν(x1) Dν(x1)

)
(10)

which is evidently unimodular, detM(ν)(x2, x1) = 1.
We also note that if the potentialŨ (X) contains in some pointXn theδ-barrier (plane) of

powerUn, i.e. that in square brackets in equation (1), there is a term

Ũ (X) = h̄2

2m
Unδ(X −Xn) = h̄2

2ml2
Unδ(x − xn)

xn = xn − xc xn = Xn

l
Un = lUn

(11)

therefore, for the solutions of the equation (2) the matrix of transfer across such a barrier at
the pointxn is [28]

Ûn =
(

1 0
Un 1

)
. (12)

3. Layers with rectangular barriers

First, we examine the model with the finite numberN + 2 of layers, so that the potential
energyŨ (X) is the piecewise constant, not necessarily periodical (figure 2). The parameter
ν exhibits the discontinuities inN + 1 pointsx0, x1, . . . , xN so that in the region of the layer
xi−1 ≺ x ≺ xi we haveŨ (X) = Ũi , ν = νi and the integration constants in (8) areAi−and
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Ai+. If the step potential̃Ui nowhere tends to(−∞) anomalously rapidly, then the presence
of the parabolic barrier in (2) provides the finite motion along thex-axis and the fulfillments
of the null boundary conditions at the infinity

ψ(±∞) = 0. (13)

It means that in (8) we have

ψ(x) =
{
A0−Dν0(−x) i.e. A0+ = 0 at x ≺ x0

A(N+1)+DνN+1(x) i.e. A(N+1)− = 0 at x � xN .
(14)

The lack of translational symmetry of equations (1) and (2) means the nonconservation
of quasi-momentum. Nonetheless, it is not so difficult, with the help of the transfer matrix
(9), (10) to write out a universal recurrent difference equation [27] which is equivalent to
the differential equation (2). It connects the values of the wavefunction in three points at
n � m � p

ψn = αnmpψm − βnmpψp (15)

whereψn = ψ(xn) is the value of the wavefunction in the nodexn and recurrent coefficients
α andβ are expressible in terms of the elements of the one-step transfer matrix (9) between
these points

αnmp = M(xn, xm)11 + βnmpM(xm, xp)22 βnmp = M(xn, xm)12

M(xm, xp)12
. (16)

There is [27] the equation, analogous to (15), for theψ ′n derived from the latter by the
change of indices(1 ↔ 2) of all elements of the transfer matrix in (16). At the beginning
of the recursionψ0 andψ ′0 are given by the boundary condition atx = x0 andψ1, ψ

′
1 are

expressed through them from (9).
If the pointsxn are chosen to coincide with the surfaces of the layers (figure 2) and the

transfer matrix elements in (16) are taken from (10), then equations (15) may be considered
as some analogue of the Harper equation [6] which describes the electron behaviour in the
two-dimensional lattice with the perpendicular magnetic field. Equation (15) by definition
corresponds to the quasi-one-dimensional model and does not reduce to the Harper equation
becauseβ 6= 1 andα are not periodic in space. On the other hand, equation (15) is rigorous
and permits us to investigate the transition from weak to tight binding in the multilayered
lattice and, in addition, to describe quantitatively the destruction of the quasi-momentum
space homogeneity at the perturbations of the periodic potential.

The renormalization of the wavefunctionψn and recurrent coefficientsα andβ at the
roughening may be expressed in terms of the determinants of the tridiagonal matrices composed
from the coefficients of equation (15) on the sequence of all nodes [27]. Furthermore, we may
investigate these expressions numerically or by using the known asymptotics ofDν(x). In
addition, it is evident from (9) and (14) that the spectral equation of the system is

(D′νN+1(xN),−DνN+1(xN))M
(νN)(xN, xN−1) . . .M

(ν2)(x2, x1)M
(ν1)(x1, x0)

×
(
Dν0(−x0)

D′ν0(−x0)

)
= 0. (17)

By substituting the transfer matrix (10) we obtain∑
P

(−1)P
N∏
i=0

det

(
Dνi(−xi) Dνi+1(xi)

D′νi(−xi) D′νi+1(xi)

)
= 0 (18)

whereP is the operation of sign changing(xi,−xi+1) → (−xi, xi+1) in the arguments of
the parabolic cylinder functions from two adjacent determinants for onei in every subsequent
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summand (not touching the signs of arguments of the extremeDν0(−x0)andDνN+1(xN)), and the
summation is taken over all these transpositions. We also omit the factors0(−νi)/

√
2π 6= 0.

When N → ∞ and at the finite potentials̃Ui all sums, products and tridiagonal
determinants converge exponentially on the Larmour radius length due to theDν(±x)
asymptotics at infinity.

If the infinitely high barrier exists in some regionxi−1 ≺ x ≺ xi , i.e.νi →−∞, then on his
left boundary the identityDνi(xi−1) ≡ 0 and on his right boundary the identityDνi(−xi) ≡ 0
are fulfilled, but the derivativesD′νi are not equal to zero as they are constants of the boundary
conditions and enter in (18) as factors not affecting the spectra of the regions mutually isolated
by the barrier.

In particular atN = 0 we have two half-spaces with the plane surface atx0 in the magnetic
field parallel to it and with the spectral equation

det

(
Dν0(−x0) Dν1(x0)

D′ν0(−x0) D′ν1(x0)

)
= 0 (19)

whence if the left region is impenetrable(Dν0(−x0) ≡ 0, ν0 = −∞), then the spectral equation
is Dν1(x0) = 0 and if the right region is impenetrable(Dν1(x0) ≡ 0, ν1 = −∞), then the
spectral equation isDν0(−x0) = 0.

WhenN = 1 we have a plate (layerx0 ≺ x ≺ x1, adjacent with two half-infinite media)
and the spectral equation

det

[(
Dν0(−x0) Dν1(x0)

D′ν0(−x0) D′ν1(x0)

)(
Dν1(−x1) Dν2(x1)

D′ν1(−x1) D′ν2(x1)

)]
− det

[(
Dν0(−x0) Dν1(−x0)

D′ν0(−x0) D′ν1(−x0)

)(
Dν1(x1) Dν2(x1)

D′ν1(x1) D′ν2(x1)

)]
= 0. (20)

From here if both media on each side are impenetrable, thenDν0(−x0) ≡ Dν2(x1) ≡ 0,
ν0, ν2→−∞ and the equation for the spectrum of a plate withν1 = ν is

det

(
Dν(x0) Dν(x1)

Dν(−x0) Dν(−x1)

)
= 0. (21)

Its asymptotics are analysed in appendix B.

4. Theδ-barriers array

As usual, in the Kronig–Penney model it is the limit of the Dirac potential comb which is the
most readily analysed both qualitatively and quantitatively.

Consider an array ofN − 1 plane-parallel potential barriersUn of the form (11) at
x = xn ≡ x0 +nd (n = 1, 2, . . . , N −1)with the matrices of transfer across them (12). The
boundary conditions to the left fromx = x0 and to the right fromx = x0 +Nd may correspond
to the mixed boundary problem, i.e. to the presence there of the barriers of different height.
In every cell (layer) the solution has the form (8) and the constantsAn+,An− with the help of
(9), (10) can easily be expressed in terms of the valuesψ andψ ′ in the nodesxn. In this paper
our prime interest is the energetic spectrum which is determined by the values of the parabolic
cylinder functions in the nodes.

The matrices of transfer across the cellsxn−1 ≺ x ≺ xn are

M(x1, x0) = M(ν)(x1, x0)

M(xn, xn−1) = M(ν)(xn, xn−1)Ûn−1 n = 2, . . . , N − 1
(22)
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hence with the help of (16) and (6) we find the recurrent coefficientsαn = αnmp, βn =
βnmp, (m = n − 1, p = n − 2) in the difference equation (15) for the neighbouring nodes
(n > 2)

αn = Mn−2,n

Mn−2,n−1
+Un−1Mn−1,n βn = Mn−1,n

Mn−2,n−1
(23)

i.e. are expressible in terms of the upper-right element of the matrix (10) of transfer along the
nodes

Mij ≡ M(ν)(xj , xi)12 = 0(−ν)√
2π

det

(
Di Dj

D−i D−j

)
(24)

possessing the evident properties

Mij = −Mji MijMkl = MikMjl +MilMkj . (25)

Here and later on the parabolic cylinder functions in the nodesxi are conveniently denoted
byDi ≡ Dν(xi),D−i ≡ Dν(−xi) omitting the indexν which is the same in all layers.

As indicated earlier, the solutions of equations (15) may be written and analysed with the
help of the determinantsBml of tridiagonal matrices with the(βn, αn, 1) on the diagonals for
the sequence of nodesm 6 n 6 l [27].

The spectrum depends on the concrete boundary conditions atx = x0 andx = x0 +Nd.
This dependence decreases with an increase of magnetic fieldH, of the system widthNd and
with a decrease of the boundary barriers. We shall restrict our consideration to two limiting
cases: the lattice without the boundary barriers and the lattice in the rectangular infinite
potential well.

First, since motion in the magnetic field is finite, one can do without the potential well on
the boundary using instead the boundary conditions (14) withν0 = νN+1 = νn = ν:

ψ(x1) = A1−D−1 i.e. A1+ = 0

ψ(xN−1) = AN+DN i.e. AN− = 0.
(26)

In this case the recurrent system (15), with the analogous system for the derivativesψ ′n [27],
may be transformed to the system for the coefficientsAn± (at the normalizationA1− = 1)

An± = α̃n±A(n−1)± − β̃n±A(n−2)± n > 3

A1+ = 0 A1− = 1 A2± = α̃2±
(27)

with the recurrent coefficients

α̃n± = 1 + β̃n± − Un−1
D∓(n−1)

D∓(n−2)
Mn−2,n−1 β̃n± =

Un−1D
2
∓(n−1)

Un−2D
2
∓(n−2)

. (28)

Then the equation for the energy spectrum is obtained by equating to zero the tridiagonal
determinant

AN− = B2
N ≡

∣∣∣∣∣∣∣∣∣∣

α̃2− 1
β̃3− α̃3− 1

β̃4− α̃4− 1
. . .

. . .
. . .

β̃N− α̃N−

∣∣∣∣∣∣∣∣∣∣
= 0. (29)

We will not analyse the asymptotics of these expressions and will concentrate our attention
on the other problem with the infinite well.
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Figure 3. The effective one-dimensional magnetic potential in the infinite rectangular well with
the lattice ofδ-barriers. The orbit centre(Xc) lies: (a) in the plate volume; (b) outside of the plate.

5. The system ofδ-barriers in the infinite rectangular well

Assume that atx = x0 andx = xN = x0 +Nd there are infinite potential walls (figure 3) with
the null boundary conditions

ψ(x0) = ψ(xN) = 0. (30)

In reality such a model corresponds to the multilayered quantum plate of widthL = Nld
or to roughly taking into account of the quantum coherence lengthL related to the electron
mean-free path.

From (9) and (30) it follows that the wavefunction in the noden is

ψn = M(xn, x0)12ψ
′(x0) (31)

and the spectral equation is

M(xN, x0)12 = 0 (32)

i.e. they are determined by the upper-right element of the transfer matrix. We may write
out for it the recurrent equation (15) with the coefficients equal to (23) and the expressions
through its tridiagonal determinants. However, it is simpler to obtain the results by the direct
multiplication of the one-step matrices (22), in fact

M(xn, x0) = M(ν)(xn, xn−1)Ûn−1M
(ν)(xn−1, xn−2)Ûn−2

. . .M(ν)(x2, x1)Û1M
(ν)(x1, x0)Û0Û

−1
0 . (33)

For the subsequent computations it is convenient to include at the end of this expression
a unit matrixÎ = Û0Û

−1
0 by defining for the first cell some effective transfer matrixÛ0 for a

‘null’ δ-barrier. Hence, by elementary induction with the help of (24), (25) we obtain for the
matrix element the rigorous finite sum

M(xn, x0)12 = M0n +
∑

16i6n−1

M0iUiMin +
∑

16j≺i6n−1

M0jUjMjiUiMin

+
∑

16k≺j≺i6n−1

M0kUkMkjUjMjiUiMin + . . . +M01

∏
16i6n−1

UiMii+1. (34)

In the right part there are exactlyn subsums and in everysth subsum there are exactly
Cs−1
n−1 terms. By substitution of (24) for the right-most elementsMin in subsums at alli one

can see that the integration constants for the wavefunction (8) in thenth cell are given by (34)
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with a simple change(Min → −D−i ) at all i for An and(Min → Di) for A−n and with the
common coefficient0(−ν)ψ ′(x0)/

√
2π in front.

Hereafter, we assume allδ-barriers to be identicalUn = U and examine the limiting cases
of the equation (32) for the spectrum.

5.1. Weak binding and strong magnetic field

In the caseU = lŪn � 1 (i.e. ch̄Ū2
n � 2|e|H ) we retain in (34) two leading subsums. In

the zero approximation atU = 0 we have equation (21) for the spectrum of the uniform plate
which is analysed in appendix B (substitutionx1→ xN ). In the linear approximation overU
we get

M(xN, x0)12 = 0(−ν)√
2π

[
(D0D−N −D−0DN)

(
1 +U

0(−ν)√
2π

N−1∑
i=1

DiD−i

)

−U 0(−ν)√
2π

(
D0DN

N−1∑
i=1

D2
−i +D−0D−N

N−1∑
i=1

D2
i

)]
= 0. (35)

(a) If the ‘orbit centre’ lies deeply in the plate volumeX0 � Xc � XN (figure 3(a)), then
in accordance with (78)D−0 ∼ DN ∼ Lν exp(−L2) are small, butD0 ∼ D−N ∼
0(−ν)−1L−(ν+1) exp(L2) are large. For a not-too-wide multilayered plate we replace the
second parentheses by a unit and obtain the equation taking into account corrections to
(92) from the lattice

D0D−N = D−0DN +U
0(−ν)√

2π

(
D0DN

N−1∑
i=1

D2
−i +D−0D−N

N−1∑
i=1

D2
i

)
. (36)

For a very wide plate|x0|, |xN | → ∞, the coefficient in front ofD0D−N is the main one,
therefore the spectrum equation is

√
2π

0(−ν) = −U
N−1∑
i=1

DiD−i . (37)

Here the dependence on the boundaries disappears. This expression can be readily
obtained in the absence of the rectangular well by calculating the determinant (29) in
the linear approximation overU .
By the expansion of the left side of (37) near the integer zerosν = n of the inverse
0-function (cf (94)) and by substitution in the right sideν = n, that isDi = Dn(xi), we
obtain a shift of the Landau levels (93) in the lattice to higher energy.

ν = n +
U√

2π2nn!

N−1∑
i=1

e
−x2
i

2 H 2
n

(
xi√

2

)
. (38)

This result is known from the perturbation theory.
(b) If the ‘orbit centre’ lies outside of the plate (the ‘skipping orbits’), for example,

behind the left boundary (figure 3(b)), thenDN ∼ Lν exp(−L2) is small,D−N ∼
0(−ν)−1L−(ν+1) exp(L2) is large andD0 ∼ D−0 ∼ 1 are oscillating in accordance with
(82), (83) asymptotics or as Airy functions (85). Instead of (96) the following equation is
obtained:

D0 = D−0

DN
D−N

+U 0(−ν)√
2π

∑N−1
i=1 Di

(
Di +D−i DND−N

)
1 +U 0(−ν)√

2π

∑N−1
i=1 D−i

(
Di −D−i DND−N

) ≡ f (ν). (39)
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For the wide plate and the weak lattice the right part is small. We can find the corrections
due to it from perturbation theory by expandingD0 at the left overν − ν0, whereν0 is the
root of equationD0 ≡ Dν0(x0) = 0 and by substitutingν = ν0 in the right partf (ν)

ν = ν0 +

(
∂D0

∂ν

)−1

ν0

f (ν0). (40)

In particular, we will obtain the corrections to the theory of Ni and Prange [14] if we take
the asymptoticsDν(x) in the form of the Airy functions (85).

5.2. The very tight binding

In the caseU = lŪn � 1 (i.e.ch̄Ū2
n � 2|e|H ) at the cost of normalization we divide (34) by

UN−1 and retain the two last subsums. In the limit ofU →∞ the last term in (34) describes
the complete localization in the layers∏

06i6N−1

Mii+1 = 0. (41)

In eachith layer in the zero approximation overU−1 the discrete spectrum is given by the
equation (21), i.e.

Mii+1 = DiD−(i+1) −D−iDi+1 = 0 (42)

which is analysed in appendix B.
For the wide layers and strong magnetic field(d � 1) the Landau magnetic localization

(93), (95) or (96) becomes apparent. For the narrow layers and weak magnetic field(d � 1)
every discrete level in the layer generates the band of the energy states connected with the
magnetic parabolic space variation of the potential energies for the effective well bottom in the
layers and is also connected with the smearing caused by the arbitrariness of the ‘orbit centre’
Xc position in the layer of its localization. Thus, from expression (104) for theith layer by
the replacementX0→ X0 + ild,X1→ X0 + (i + 1)ld we get fori � 1

Et = En +
mω2

0

2
[ild − (Xc −X0)]

2 En = h̄2

2m

(πn
L

)2
. (43)

It is seen from (41) that with the increase of system widthN→∞ the dependence onXc
becomes periodical with the periodld. At largei the energy density of states in the band with
the numbern has a singularity of the inverse square root type near the thresholdEn which is
typical for the one-dimensional systems

di

dEt
= 1√

2mω0ld

1√
Et − En

. (44)

The penultimate subsum in (34) describes the penetration of the wavefunction of steady
states (42) into the adjacent layers and the shift of their energy levels.

Thus, if layeri is not on the well border(i 6= 0, N), then near the root of (42) the perturbed
equation is

Mii+1 = − 1

U

(
Di

Di+1
+
Di+1

Di

)
(45)

and if the layers are on the well border, then the perturbed equations are

M01 = − 1

U

D0

D1
MN−1N = − 1

U

DN

DN−1
(46)

with ν equal to the root of (42) at the right.
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5.3. Very weak magnetic field

Now consider the limiting case corresponding to switching off the magnetic field, when
H ∼ ω0→ 0, i.e. we have a strong increase of the magnetic lengthl ∼ 1/

√
H →∞ and the

parametera = −Et/h̄ωo → −∞ in the Weber equation. It means that for electrons moving
mainly transverse to the layers (py is not anomalously large) we may use the semiclassical
asymptotics of the parabolic cylinder functions (82). Then we get for the transfer matrix (10)
the following expression:

M(ν)(xm, xn) =
( √

Yn
Ym

cos(θm − θn) 2√
YnYm

sin(θm − θn)
−
√
YnYm
2 sin(θm − θn)

√
Ym
Yn

cos(θm − θn)

)
(47)

where

Yn =
√

4|a| − x2
n � 1

θn = xn

4
Yn + |a| arcsin

xn

2
√|a| .

(48)

We introduce the dimensionless wavenumber for the motion transverse to the layers

k ≡ k̃l =
√
|a0|. (49)

The ‘real’ transverse wavenumberk̃, the energy of transverse motionE⊥ and the effective
parameter|a0| are

k̃ = 1

h̄

√
2mE⊥ E⊥ = Et −

p2
y

2m
|a0| = E⊥

h̄ω0
= |a| − x

2
c

4
. (50)

Under the assumption thatk � 1 we will expand ink−1 the semiclassical phase and
pre-exponent

θn = kxn −æn − θc θc = kxc + 1
12x

3
c Yn = 2k(1− εn) (51)

where the small expansion parameters are

æn = x2
n(xn − 3xc)

24k
= eHX2

n

2ch̄2k̃

(
eHXn

3c
− py

)
� 1

εn = xn(xn − 2xc)

8k2
= eHXn

c(h̄k̃)2

(
eHXn

2c
− py

)
� 1.

(52)

We hold terms of the lowest order, so for the magnetic fieldH we get the linear corrections
from the effect of the ‘orbit centre’Xc ∼ py and the square corrections from the effect of the
‘node coordinate’Xn (it is important for the electrons withXc � Xn, i.e. cpy � eHXn).
In principle, it is not so difficult to hold all quadratic in the magnetic field corrections (of the
p2
yH

2 type and so on [16,17]), but we do not pursue these objectives. Note, that in semiclassics

usuallykd = k̃ld � 1 and the pre-exponent role is relatively small:

1� æn ∼ k̃Xnεn � εn. (53)

In addition, the condition of the semiclassical approximation (84) itself gives a weak
restriction

|Xn −Xc| � 8k̃3l4. (54)

Sinced = xn − xn−1 is the period of the lattice composed from the identicalδ-barriers
Ûn = Û , then the matrix (22) of transfer across the celln = 1, 2, . . . , N taking into account
the linear corrections (52) is

M(xn,xn−1) ≡ M(ν)(xn,xn−1)Û = ˆ̃M + ˆ̃δn−1 (55)
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where the transfer matrix across the cell without the magnetic field is

ˆ̃
M = M̂Û M̂ =

(
coskd 1

k
sinkd

−k sinkd coskd

)
Û =

(
1 0
U 1

)
(56)

and a correction to it in the magnetic field is

ˆ̃
δn = δ̂nÛ δ̂n = (æn+1−æn)α̂ + 1

2(εn+1β̂+ + εnβ̂−)

α̂ =
(

sinkd − 1
k

coskd
k coskd sinkd

)
β̂± =

(± coskd 1
k

sinkd
k sinkd ∓ coskd

)
.

(57)

From (33) in the linear in̂̃δn approximation we get the matrix of transfer across the whole well

M(xN,x0) =
(
ˆ̃
M
N

+
N−1∑
n=0

ˆ̃
M
N−n−1 ˆ̃

δn
ˆ̃
M
n
)
Û−1. (58)

For it to be valid the lattice potential should not be too strongUæ, Uε � k.

The integer powers of the matrix̃̂M are expressed by the known Abelés expression [29]

ˆ̃
M

n

= Un−1(h)
ˆ̃
M − Un−2(h)Î . (59)

With the help of the second-kind Chebyshev polynomials [24]

Un−1(h) = 1√
1− h2

sinn arccosh (60)

one can see from (56) that for our model their argument is the Kronig–Penney function

h = 1

2
Sp
ˆ̃
M = coskd +

U

2k
sinkd. (61)

(a) In the absence of the magnetic fieldδ̂n = 0 and in accordance with (32) we obtain the
equation for the spectrum of the quasi-one-dimensional lattice in the rectangular infinite well(

ˆ̃
M

N
)

12

= 1

k
sin k̃ldUN−1(h) = 0. (62)

Zeros of sine give zone thresholdsk̃ = ñπ/ ld, ñ = 0,±1,±2, . . . and the zeros of Chebyshev
polynomials are

hN−1,n = cos
n

N
π n = 1, 2, . . . , N − 1. (63)

They are connected with the characteristic exponents of the multiplicatorsλ (eigenvalues of
the matrix of transfer by a period) [18]

det( ˆ̃M − λÎ ) = 0 λ = e±iKld (64)

whence follows the dispersion law for the quasi-momentumK

cosKld = h. (65)

Thus the allowed quasi-momentum values

Kn = 1

ld
arccoshN−1,n = ± n

N

π

ld
(66)

are the discrete points uniformly filling the one-dimensional Brillouin zone of the size
[−π/ld, π/ld].
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(b) In the weak magnetic field with the help of (56), (57) and (59) we perform in (58) long
but standard calculations of the upper-right elementM(xN,x0)12 and the spectral equation (32)
takes the following form(

ˆ̃
M

N
)

12

= 1

k
sinkdUN−1(h) = f (h,H) (67)

where a small (∼æ and∼ε ) perturbing functionf (h,H) in the right part describes the shift
of the roots of equation (62) and destruction of theK-space homogeneity. Aside fromH , the
function depends on the ‘orbit centre’ locationXc, the energyk and the lattice parametersXn,
U ,N , d:

f (h,H) = æN −æ0

k
(UN−1(h) coskd − UN−2(h))− εN + ε0

2k
UN−1(h) sinkd

+
U

k2
sinkd

N−1∑
n=1

[ænUN−2n−1(h)− εnUN−n−1(h)Un−1(h) sinkd]. (68)

The shift1h = h−h0 of the rootsh0 of the equation (62) will be obtained by the expansion
of the left side (67) in a small shift1h and by the substituting in the right partf (h0, H).

The form of the corrections in the magnetic field depends on the location of the left and
right sides of the plate because the origin of the coordinates determines a zero of the vector-
potential and the form of the Hamiltonian of the input problem (1). The formulae look simpler
if we choose the origin on the left surface of the plate, assumingx0 = 0, xn = nd (i.e.
æ0 = ε0 = 0). So, for the roots on the thresholds of zonesk̃0 = ñπ/ ld, where sink0d = 0
we haveh0 = cosk0d = (−1)ñ,UN−1(1) = N ,UN−1(−1) = (−1)N−1N , from where we get
the perturbed values of threshold wavenumbers

k̃ = ñπ

ld
+

æN
Nld
= ñπ

ld
+

1

ñ

ld

2πh̄2

eHL

c

(
eHL

3c
− py

)
. (69)

Out of thresholds, assuming sinkd 6= 0 and denotingt = arccosh it is convenient to rewrite
the equation (67) in the trigonometrical form

sinNt = f̃ (t, H) (70)

where

f̃ (t, H) = æN −æ0

sinkd
(sinNt coskd − sin(N − 1)t)− εN + ε0

2
sinNt

+
U

k

N−1∑
s=1

[
æs sin(N − 2s)t − εs

2

sinkd

| sint | (cos(N − 2s)t − cosNt)

]
. (71)

The trigonometrical sums iñf (t,H) can be computed, they give the singularity of cott

type as shown in appendix C. We will perform the computations only near the rooth0 = hN−1,n

(example (63)) wheretn = ±nπ/N , and the left side of (70) in the linear in1h� 1 order is
equal to

(−1)n+1 N

sin n
N
π
(h− hN−1,n) (72)

and in the right part we may substitutet = tn andk = kn wherekn is the solution of the
equation (61), i.e.h(kn) = hN−1,n.

If one defines ‘quasi-momentum’K in accordance with (64), (65) and assumes the right
part of (71) to be small∼4Kld � 1,4K = K −Kn, then

cosKld = cos
n

N
π −4Kld sin

n

N
π (73)
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and the allowed values of the ‘quasi-momentum’ are

Kn = ±
( n
N

π

ld
+4K

)
(74)

where4K = 4K(n) describes quantitatively the degree of the breakdown of the equality
(66), that is the degree of non-homogeneity of theK-space:

4K(n) = æ0 −æN
Nld

sin n
N
π

sinknd
+

U

Nldkn

N−1∑
s=1

æs sin 2π
n

N
s

+
U

Nldkn

sinknd

sin n
N
π

N−1∑
s=1

εs

2

(
1− cos 2π

n

N
s
)
. (75)

We sum up the trigonometrical sums in (75) by using the formulae from the appendix C,
because æs includes the second and the third powers ofs andεs includes the first and the
second powers. If we take the origin of the coordinates on the left boundary of the plate, then
in (52)X0 = 0, Xn = nld and, as a final result, we get the sum of contributions from the
boundary4Kb, from the semiclassical phase4Kæ and pre-exponent4Kε
4K(n) = 4Kb +4Kæ+4Kε (76)

4Kb = eHL

2ch̄2k̃n

(
py − eHL

3c

)
sin n

N
π

sin k̃nld

4Kæ= U eHL

4ch̄2k̃2
n

(
py − eH

3c

(
L− 3l2d2

L sin2 n
N
π

))
cot

n

N
π (77)

4Kε = −U eHL

4cldh̄2k̃3
n

(
py − eH

3c

(
L− l

2d2

L

(
1 +

3

2
cot2

n

N
π

)))
sin k̃nld

sin n
N
π
.

The last sum in (75) and the last term in (76) can be neglected if æn � εn ( i.e.kd � 1).
We emphasize that the ratioU/k̃n and hence4Kæ/4Kb may be not small.

The main result is seen from (77): the value of4K(n) sharply increases at largeN when
n � N or N − n � N , that is near the Brillouin zone boundaries. This increase is mainly
described by the powers of the function cotn

N
π . With the increase of energy (number of zone)

the value4K decreases as some powers of 1/kn. The dependence of4K from the plate width
L = Nld is essential whileL is small relative to the electron mean-free path. In the opposite
caseL can be replaced by the order of value by this mean-free path.

The singular addition1K(n), as told, characterizes quantitatively the degree of the quasi-
momentum space nonhomogeneity, i.e. the metric tensor of theKn-space dependence on the
coordinates. Also,1K(n) characterizes the width1Knonh of the region near the Bragg plane
where this nonhomogeneity is most essential, i.e. suchKn where1K(n) > π/Nld ≡ π/L.
It is an important question in magnetic breakdown and related problems. For example, in the
simplest situation, when in (76) the first term in1Kæ is the largest one we get for1Knonh the
expression

1Knonh = 1

ld
arccot

4πch̄2k̃2
n

UeHL2py
.

The new analytical type of the revealed singularity, obviously changes the character of
the Van Hove singularities [31] in the energy density of states dn/dEt on the thresholdsE0

of zones. For example, from (65), in the approximation (77) at 1� n/N � ld1K(n) and
1E ∼ n2, where1E = Et − E0, one can see that on the background of usual threshold
singularity(1E)−1/2 the additions arise of typēUH(1E)−3/2, ŪH 2(1E)−5/2 and so on.
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6. Conclusions

In conclusion, we discuss the obtained results and mention the obscure questions and the lines
of their solutions. The majority of them are as follows.

(1) We have examined the analytical solutions of the steady-state Schrödinger equation for
the model of the multilayered structure with the geometry of (figure 1) in the magnetic
field parallel to layers. On the base of the parabolic cylinder functions we gave a transfer
matrix formulation of the problem and reduced it to the equivalent difference scheme.
The rigorous solutions for the transfer matrix elements, the wavefunctions and the spectral
equations were represented in form of the sums, series and tridiagonal determinants of the
original structure. Their asymptotics were analysed for a few nontrivial cases.

(2) Our transfer matrices and wavefunctions provide a means for calculating the electric
current and energy flux, the spectrums of reflectance and transmissivity of the multilayered
systems in magnetic field.

(3) It should be noted that the inclusion of electrical fieldEf ield ‖ X leads to simple
modifications of our rigorous expressions. The additional potential energy1U =
−eEf ieldX in (1) induces the following replacements in all results:

Xc → Xc +
mc2Ef ield

eH 2

Et → Et +
cEf ieldpy

H
+
mc2E2

f ield

2H 2

which take into account the drifting along they-axis and give the rigorous solutions for
the steady states of the ballistic quantum Hall effect situation in the (figure 1) geometrical
configuration [32].

(4) We obtained the rigorous equation (18) for the electronic energy spectrum in the system
with arbitrary number of the rectangular potential barriers. For the system of flatδ-barriers
the general results were represented in the form of the tridiagonal determinants (a type of
(29)) i.e. in the form of the special sums and series (a type of (32), (34)) at the different
boundary conditions. The limit of the one-dimensional periodic lattice is easily passed in
all formulae. We distinguished the cases of the volume and the surface (‘skipping orbits’)
states.

(5) The following qualitative conclusions sum up our analytical results.
If one begins the analysis from the behaviour of the free electron in a magnetic field at
switching on the disturbing lattice, then it should be noted that the Landau wavefunction
has a few typical parameters with the dimension of length with respect to the orbit centre
Xc. First, it is the ‘magnetic length’l = (ch̄/2eH)1/2 of the exponential increase of the
wavefunction amplitude in the parabolic well and of the exponential decrease outside the
well. There are no other length-dimensional parameters for the low-energy Landau levels.
However, for the highn � 1 levelsEn ' nh̄ω0, in the semiclassical situation, there are
two other parameters with a strongly different scale: the wavelengthλM = 2πl/

√
n

of space oscillations in the middle of the well which, of course, smoothly increases
to the well periphery and the classical turning point coordinatext = 2l

√
n, so that

λM � l � xt , and alson ' xt/λM are in accordance with the oscillation theorem.
Alternatively, in the rectangular potential well (layer) of widthld in theN th state with
the energyEN = h̄2N2/2ml2d2 the wavelength isλW = ld/N . It is evident that with
the increase of theδ-barrier powerŪ the lattice suppresses long wave oscillations on the
periphery of the magnetic field parabola whereλM � ld; as a result the locking effect for
the levels with resonance space oscillations rises. In this case that Landau level ‘survives’,
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which satisfies the conditionld = NλM (i.e.n = (N/d)2). The effect of the ‘orbit centre’
Xc location smears these levels into the bands.
If one begins the analysis from the behaviour of the Bloch election in the lattice at switching
on the disturbing magnetic field than the cotangent singularity of a metric arises near
the Bragg planes in the quasi-momentum space, as we have shown in the framework
of the considered model, i.e. the destruction of theK-space homogeneity begins from
the Brillouin zone boundary. Moreover, because of the noted singularity one should
carefully make use of the ordinary semiclassical arrangements of zone analysis of the
galvanomagnetic and related phenomena in crystals—the Landau cylinders, the cyclotron
mass and so on [8, 9, 30]. The revealed new singularity has to become apparent in such
physical phenomena as the magnetic breakdown, the diamagnetic susceptibility and others.

(6) We have to emphasize that the singularity of the considered type is obviously not specific
to the Bloch electrons only in the magnetic field. We can show that this singularity
is universal for the arbitrarily extensive semiclassical perturbation, in particular, for the
homogeneous electric field it has been done with the help of the Airy functions [32].
That is apparently some general singular natural phenomenon of the phaseK-space
collapse when the weak extensive disturbance operates in a lattice. We remind ourselves
of the other well known diffraction peculiarities in an ideal lattice for the quasi-wave
vectors are closed to the Bragg planes: the orthogonality of the isoenergetic surfaces to
these planes, the Van Hove singularities and so on.

(7) In the two-dimensional lattices the effect of zone subdivision at switching on the weak
magnetic field is usually described as a fractal process of the formation of a Cantor
discontinuum for the energy values [10–12]. The principal dependence on the quantum
of the magnetic flux across the unit cell is essential. The account of diffraction on the
x- andy-surfaces of the cells lead to a justification [33] of the phenomenological Peierls
rule [2] and as a consequence to the one-dimensional alongx-axes difference Harper’s
equation [6] with the periodic potential which is incommensurate to the lattice potential.
In our model the cell (layer) has an infinite area, the diffraction ony-boundaries is absent
and the quantum of the magnetic flux across the cell of the infinite size does not reveal
itself in the coefficients of the rigorous difference equation (15) as well in the other
results. Nevertheless, it is interesting that there is the original analytical singularity of
cotangent type in the metric ofK-space and connected with the weak magnetic field.
The manifestation of this singularity in the two-dimensional lattices and its relation to the
fractal density of states for them is still an open question.
It would be interesting to apply a similar analysis to the model with the finite-size
rectangular cells which have partially penetrable boundaries parallel to thex- andy-axes.
This problem requires numerical calculations since we can not separate variables in the
Schr̈odinger equation even for the simplest Landau gauge and obtain the one-dimensional
wave equation of the second order along they-axes (similar to thex-axes) and thereupon
the transfer matrix. Proceeding from the system consisting of a few coupled periodical
strips to the limit of the system with the periodic two-dimensional potentialŨ (X, Y ) one
hopes to observe not only the origin of the Peierls rule in a weak magnetic field [33],
but the evolution of the two-dimensional Bloch electron spectrum in the strong magnetic
field.
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Appendix A. Asymptotics of the parabolic cylinder functions

The asymptotic expansions for the Weber functions have been well studied and may be found
in [22–26]. We present below the most important formulae, retaining only the main terms of
the appropriate expansions and considering thatν is not an integer(a = −ν − 1

2).

(I) Far out of the parabolic well under the barrier at|x| � |a| the decreasing and the increasing
solutions are

Dν(x) = |x|νe− x2

4 x →∞
Dν(x) =

√
2π

0(−ν)
1

|x|1+ν
e
x2

4 x →−∞
(78)

moreover near the integer values ofν ≈ n at the expense of 1/0(−ν)→ 0 the increasing
at x → −∞ part of the solutionDν(x) vanishes and asymptotically decreases as the
|x|n exp(−x2/4) part. Then

Dν(−x) = Dν(z) z = −x. (79)

In differentiation overx, it is obviously sufficient to only take into account the exponent.
(II) Far from the classical turning pointx2 = 4|a| the main terms of the Darwin expansions [26]

in the Liouville–Green (or semiclassical WKBJ) approximation are:

(1) out of the parabolic well under the barrier.
(a) At a � 0, i.e.Ũ � Et andX̃ =

√
x2 + 4a � 1:

Dν(±x) = (2π)
1
4√

0(−ν)
1√
X̃

e∓2̃

D′ν(±x) = ∓
(2π)

1
4√

0(−ν)

√
X̃

2
e∓2̃

2̃ = 1

2

∫ x

0
X̃ dx = x

4
X̃ + aarsh

x

2
√
a

(80)

(b) ata ≺ 0, i.e.Ũ ≺ Et andX =
√
x2 − 4|a| � 1

Dν(±x) =
√
0(1 + ν)

(2π)
1
4

1√
X

e∓2̄

D′ν(±x) = ∓
√
0(1 + ν)

(2π)
1
4

√
X

2
e∓2̄

2̄ = 1

2

∫ x

2
√|a|

X dx = x

4
X + aarch

x

2
√|a|

(81)

(2) inside the parabolic well above the barrier ata ≺ 0, i.e. Ũ ≺ Et and Y =√
4|a| − x2� 1

Dν(±x) =
√
0(1 + ν)

(2π)
1
4

2√
Y

cos
(
±2− πν

2

)
D′ν(±x) = ∓

√
0(1 + ν)

(2π)
1
4

√
Y sin

(
±2− πν

2

)
2 = 1

2

∫ x

0
Y dx = x

4
Y + |a| arcsin

x

2
√|a|

(82)

from which atν ≈ −a � 1 by using known0-function properties it is not so difficult
to get a pure oscillatory limit

Dν(±x) = 1√
π

2
ν
20

(
1 + ν

2

)
cos

(
±√νx − πν

2

)
. (83)
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We note that the semiclassical condition [1] requires the relative smallness of the
derivative ∣∣∣∣dλdx

∣∣∣∣ ∼ ∣∣∣ xY 3

∣∣∣� 1 (84)

whereλ ∼ Y−1 is the typical wavelength, whence
x2/3� 4|a| − x2.

(III) In the region near the classical turning pointx2 = 4|a|where the potential is almost linear,
in the Langer approximation at(−a) = ν + 1

2 � 1 the solutions may be expressed in
terms of Airy functionsAi(τ) andBi(τ) [24,25]

Dν(x) = A(ν, τ)Ai(τ )
Dν(−x) = A(ν, τ)(cosπa Ai(τ) + sinπaBi(τ ))

(85)

where

A(ν, τ) = 2
ν
20

(
1 + ν

2

)(
τ

ξ2 − 1

)1/4

ξ = x

2
√|a|

τ =


−
[

3

2
|a|
(
arccosξ − ξ

√
1− ξ2

)]2/3

ξ 6 1[
3

2
|a|
(
ξ
√
ξ2 − 1− archξ

)]2/3

ξ > 1

(86)

whence in the immediate vicinity1x = x − 2
√|a| of the turning point we have at

|1x| � 2
√|a|, thatτ = |a|1/61x and

A(ν, τ) = 2
ν
20

(
1 + ν

2

)
|a|1/6 (87)

i.e. the last coefficient is independent ofτ .

Appendix B. The spectrum of plate in the parallel magnetic field

Equation (21) gives the spectrum of a plate in the magnetic field

M(x1, x0)12 ≡ M01 = 0(−ν)√
2π

(D0D−1−D−0D1) = 0. (88)

The knowledge of asymptotics of the parabolic cylinder functionsDi ≡ Dν(xi) and
D−i ≡ Dν(−xi) permits us to select the limiting cases for the plate of the widthL = (x1−x0)l.

B.1. The wide plate and the strong magnetic field(L� l)

(a) If the ‘orbit centre’ lies deeply in the plate volumeX0 � Xc � X1 (figure 3(a)), then
with the help of (78) and (79) we see that

D−0D1 = |x0x1|νe−
x2
0+x2

1
4 (89)

is exponentially small and

D0D−1 =
( √

2π

0(−ν)

)2
1

|x0x1|1+ν
e
x2
0+x2

1
4 (90)

is exponentially large except for suchν when√
2π

0(−ν) = 0. (91)
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The spectral equation (88) takes the form∣∣∣∣∣
√

2π

0(−ν)

∣∣∣∣∣ = |x0x1|ν+ 1
2 e−

x2
0+x2

1
4 . (92)

At |x0|, |x1| → ∞ we have (91), its roots are the integer numbersν = n that gives the
Landau spectrumEt = En

En = h̄ω0(n + 1
2) n = 0, 1, 2, . . . . (93)

By the expansion of the inverse0-function near itsnth zero
1

0(−ν) = (−1)n+1n!(ν − n) (94)

we get from (92) the solutions

ν = n +
1√

2πn!
|x0x1|n+ 1

2 e−
x2
0+x2

1
4 (95)

that describe the upward shift of thenth Landau level if one replacesn by ν in (93).
(b) If the ‘orbit centre’ lies outside the plate (the classical ‘skipping orbits’, figure 3(b)), for

example, behind the left boundaryx0, then taking into account the right boundary influence
the spectral equation is

D0 = D−0
D1

D−1
. (96)

From (78) one can seen the exponential smallness of the ratio in the right part

g(x1, ν) ≡ D1

D−1
= 0(−ν)√

2π
|x1|1+2νe−

x2
1
2 � 1 (97)

at x1 → ∞ we get the spectral equation for the half-spaceDν(x0) = 0. By substituting
the asymptotics ofDν(x0) andDν(−x0) across the Airy functions (85) it is not so difficult
to reproduce the results of Nee and Prange [14] for the spectrum of the ‘skipping orbits’
near the left boundary

Ai(τ0) = 0 (98)

whereτ0 ≺ 0 and is expressed acrossx0 with the help of (86) or (87). From (96) in this
case we get the equation which describes the shift of the levels from reflections on the
right boundary

Ai(τ0) = g(x1, ν) sinπaBi(τ0)

1 +g(x1, ν) cosπa
(99)

the right part is usually small and may be treated as perturbation.

B.2. The narrow plate and the weak magnetic field(L� l)

By using the semiclassical asymptotics (82) and the known properties of the0-function we
reduce (88) to the form

M01 = 1√
Y0Y1

sin(21−20) = 0 (100)

where20,1 = 2(x0,1) andY0,1 = Y (x0,1), i.e. just to the equation for the spectrum of the
standing waves in the plate

21−20 = nπ n = 0, 1, 2, . . .

20,1 = |a|
(
ξ0,1

√
1− ξ2

0,1 + arcsinξ0,1

)
ξ0,1 = x0,1

2
√|a| .

(101)
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In fact, this spectrum was explicitly examined by Papapetrou [15] and Friedman [16,17],
who considered the magnetic field as weak perturbation.

We only note the dependence of the energy levels on the position of the ‘orbit centre’Xc
and the plate boundariesX0,1. So, at|a| � 1� |x0,1| with the expansion inξ0,1� 1 we get

2|a|(ξ1− ξ0)[1− 1
6(ξ

2
0 + ξ0ξ1 + ξ2

1 )] = nπ (102)

whence the law of the quantization for the dimensionless spectral parameter|a| with the
corrections of the second order in|x0,1| � 1 is

|a| =
(
nπl

L

)2

+
1

12
(x2

0 + x0x1 + x2
1) (103)

or in the real variables

Et = h̄2

2m

(nπ
L

)2
+
mω2

0

6
(1X2

0 +1X01X1 +1X2
1) (104)

where1X0,1 = X0,1−Xc.

Appendix C

For the computation of the trigonometrical sums in (71) and (75) we consider the geometric
progression

m−1∑
k=0

eikγ = eiγm − 1

eiγ − 1
(105)

its singularities are determined by the zeros of the function sinγ /2 . Let us differentiate
(105) overγ successively three times, separate the real and the imaginary parts and substitute
m = N , γ = 2πn/N , wheren = 1, 2, . . . N − 1. We obtain the following sums
N−1∑
s=1

{
sin 2π n

N
s

cos 2π n
N
s

}
=
{

0
−1

} N−1∑
s=1

s

{
sin 2π n

N
s

cos 2π n
N
s

}
= −N

2

{
cotπ n

N

1

}
N−1∑
s=1

s2

{
sin 2π n

N
s

cos 2π n
N
s

}
= −N

2

{
N cotπ n

N

N − 1− cot2 π n
N

}
N−1∑
s=1

s3

{
sin 2π n

N
s

cos 2π n
N
s

}
= −N

4

{
(2N2 − 3(1− cot2 π n

N
)) cotπ n

N

N(2N − 3(1− cot2 π n
N
))

}
.

(106)

In the right part one can see the singularity of the cotπn/N power type at largeN if
n� N or n−N � N . We also note the known sums

N−1∑
s=1

s = 1
2N(N − 1)

N−1∑
s=1

s2 = 1
2(N − 1)N(2N − 1). (107)
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